Question 9: In R^3 , consider the planes P_1 : y = 0 and P_2 : x+z = 1. Let P_3 be a plane, different from P_1 and P_2 , which passes through the intersection of P_1 and P_2 . If the distance of the point (0, 1, 0) from P_3 is 1 and the distance of a point (α, β, γ) from P_3 is 2, then which of the following relation is (are) true?

(a)
$$2\alpha + \beta + 2\gamma + 2 = 0$$

(b)
$$2\alpha - \beta + 2\gamma + 4 = 0$$

(c)
$$2\alpha + \beta - 2\gamma - 10 = 0$$

(d)
$$2\alpha - \beta + 2\gamma - 8 = 0$$

Solution:

Let
$$P_3$$
 be $P_2 + \lambda P_1 = 0$

$$=> (x+z-1) + \lambda y = 0$$

$$=> x + \lambda y + z - 1 = 0$$

Distance of the point (0, 1, 0) from P₃ is $|(\lambda-1)/\sqrt{(2+\lambda^2)}| = 1$

$$=> (\lambda-1)^2 = (2+\lambda^2)$$

$$=> -2\lambda + 1 = 2$$

$$=> -2\lambda = 1$$

$$=> \lambda = -1/2$$

Distance of point (α, β, γ) from P_3 : $|(\alpha + \lambda \beta + \gamma - 1) / \sqrt{(2 + \lambda^2)}| = 2$

$$|(\alpha - (\beta/2) + \gamma - 1)/(3/2)| = \pm 2$$

$$\alpha$$
- (β /2) + γ -1 = ± 3

$$=> 2\alpha - \beta + 2\gamma - 2 = \pm 6$$

$$=> 2\alpha - \beta + 2\gamma - 8 = 0$$
 or $2\alpha - \beta + 2\gamma + 4 = 0$

Hence option b and d are the answers.